A Structural Characterization for Certifying Robinsonian Matrices

نویسندگان

  • Monique Laurent
  • Matteo Seminaroti
  • Shin-ichi Tanigawa
چکیده

A symmetric matrix is Robinsonian if its rows and columns can be simultaneously reordered in such a way that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. The adjacency matrix of a graph is Robinsonian precisely when the graph is a unit interval graph, so that Robinsonian matrices form a matrix analogue of the class of unit interval graphs. Here we provide a structural characterization for Robinsonian matrices in terms of forbidden substructures, extending the notion of asteroidal triples to weighted graphs. This implies the known characterization of unit interval graphs and leads to an efficient algorithm for certifying that a matrix is not Robinsonian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect elimination orderings for symmetric matrices

We introduce a new class of structured symmetric matrices by extending the notion of perfect elimination ordering from graphs to weighted graphs or matrices. This offers a common framework capturing common vertex elimination orderings of monotone families of chordal graphs, Robinsonian matrices and ultrametrics. We give a structural characterization for matrices that admit perfect elimination o...

متن کامل

A Lex-BFS-Based Recognition Algorithm for Robinsonian Matrices

Robinsonian matrices arise in the classical seriation problem and play an important role in many applications where unsorted similarity (or dissimilarity) information must be reordered. We present a new polynomial time algorithm to recognize Robinsonian matrices based on a new characterization of Robinsonian matrices in terms of straight enumerations of unit interval graphs. The algorithm is si...

متن کامل

Similarity-First Search: a new algorithm with application to Robinsonian matrix recognition

We present a new efficient combinatorial algorithm for recognizing if a given symmetric matrix is Robinsonian, i.e., if its rows and columns can be simultaneously reordered so that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. As main ingredient we introduce a new algorithm, named Similarity-First-Search (SFS), which extends Lexicographic BreadthFirst S...

متن کامل

Seriation in the presence of errors: NP-hardness of l∞-fitting Robinson structures to dissimilarity matrices

In this paper, we establish that the following fitting problem is NP-hard: given a finite set X and a dissimilarity measure d on X (d is a symmetric function d from X to the nonnegative real numbers and vanishing on the diagonal), we wish to find a Robinsonian dissimilarity dR on X minimizing the l∞-error ||d− dR||∞ = maxx,y∈X{|d(x, y)− dR(x, y)|} between d and dR. Recall that a dissimilarity d...

متن کامل

Seriation in the Presence of Errors: an Approximation Algorithm for Fitting Robinson Structures to Dissimilarity Matrices

The classical seriation problem consists in finding a simultaneous ordering (or permutation) of the rows and the columns of the dissimilarity matrix d on a finite set X with the objective of revealing an underlying one-dimensional structure (d is a dissimilarity if d(x, y) = d(y, x) ≥ 0 and d(x, y) = 0 iff x = y). The basic idea is that small values should be concentrated around the main diagon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017